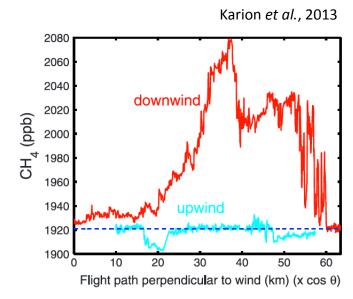


Area-wide emission flux measurements from aircraft Michael Trainer

Methane Emission Flux Measurement over the Uinta Basin

The airborne mass balance technique gives an accurate "top-down" observation-based emission flux estimate used by CSD in field campaigns since 1992

Mass balance for the Uinta Basin on 3 February 2012: CH_4 emission flux = (55 ± 15) metric tons per hour \rightarrow 9% of CH_4 production leaked to the atmosphere

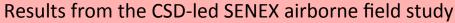

Local Economic, Climate & Health Perspective:

Leaked CH₄ could generate 85% of the electricity of the 500 MW Bonanza coal-fired power plant

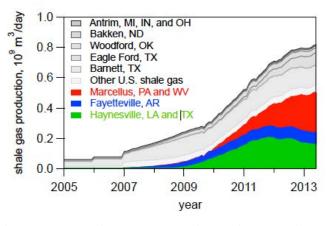
- electricity for 400,000 households
- with less than half of the CO₂ emissions
- with much reduced NO_x and SO_2 emissions

Application to CSD modeling:

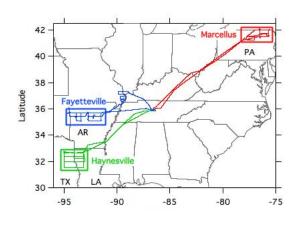
This CH_4 emission flux, coupled with observed VOCto- CH_4 ratios (*Jessica Gilman, talk 4-3*), provided key input for CSD regional chemical modeling (*Ravan Ahmadov, talk 4-5*)


$$flux = v \cos(\alpha) \int_{z_0}^{z_1} \int_{-y}^{y} (X - X_{bg}) dy dz$$

Collaborations within ESRL:

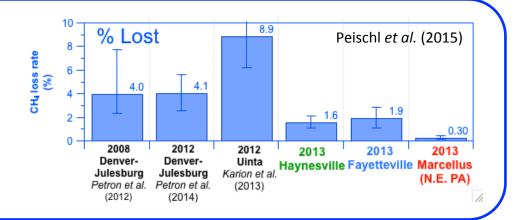

Airborne CH₄ data: Global Monitoring Division Lidar wind data: Chemical Sciences Division Turbulence data: Physical Sciences Division

Comparison of CH₄ emissions from different oil & gas basins



NOAA P-3

Southeast Nexus (SENEX) study Summer 2013

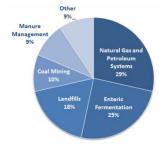


The Haynesville, Fayetteville and Marcellus regions contribute about 50% of U.S. shale gas production

CSD used the P-3 aircraft in 2013 to assess CH₄ and VOC emissions from these 3 regions

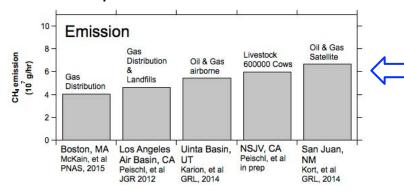
Average CH₄ emissions in these 3 regions equaled about 1% of production, roughly consistent with US EPA estimates

But across the U.S., one size does not fit all


CSD studies have helped quantify the large regional variability in oil & gas CH₄ emissions

Comparison of CH₄ emissions from different U.S. source types

Our research provides critical context for oil & gas CH₄ emissions

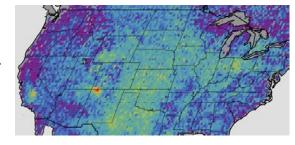

 CH_4 sources in the U.S. EPA

CSD quantifies CH₄ from oil & gas, coal, livestock, landfills, & urban sources

Ongoing modeling work: reconcile findings from different top-down approaches

CSD uses top-down emissions data and the WRF-Chem 3-D model to provide a "transfer standard" for meaningful validation of satellite CH₄ column data

Top-down emissions data



CSD modeling

NOAA High Performance Computing System

Satellite column data

 CH_4 columns from the SCIAMACHY sensor Kort *et al.*, (2014)

Addresses Presidential Climate Action Plan goal for improved knowledge of CH₄ sources